The Optimal Control Landscape for the Generation of Unitary Transformations with Constrained Dynamics

نویسندگان

  • MICHAEL HSIEH
  • REBING WU
چکیده

The reliable and precise generation of quantum unitary transformations is essential to the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of non-dissipative and controllable dynamics, the landscape topology is trap-free, implying that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis incorporating specific constraints in the Hamiltonian corresponding to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to solution by optimal control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal control landscape for the generation of unitary transformations with constrained dynamics

Michael Hsieh,1,2 Rebing Wu,5 Herschel Rabitz,6 and Daniel Lidar1,2,3,4 1Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, USA 2Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA 3Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089...

متن کامل

A Characterization of the Entropy--Gibbs Transformations

Let h be a finite dimensional complex Hilbert space, b(h)+ be the set of all positive semi-definite operators on h and Phi is a (not necessarily linear) unital map of B(H) + preserving the Entropy-Gibbs transformation. Then there exists either a unitary or an anti-unitary operator U on H such that Phi(A) = UAU* for any B(H) +. Thermodynamics, a branch of physics that is concerned with the study...

متن کامل

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009